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Abstract Poly-(ADP-ribose)-polymerase (PARP) is a
promising anti-cancer target as it plays a crucial role in
the cellular reparation and survival mechanisms. However,
the development of a robust and cost effective experimental
technique to screen PARP inhibitors is still a scientific
challenge owing to the difficulties in quantitative detection
of the enzyme activity. In this work we demonstrate that the
computational chemistry tools including molecular docking
and scoring can perform on par with the experimental
studies in assessing binding constants and in the recovery
of active compounds in virtual screening. Using the
recently introduced Lead Finder software we were able to
dock a set of 142 well characterized PARP inhibitors and
obtain a good correlation between the calculated and
experimentally measured binding energies with the rmsd
of 1.67 kcal mol−1. Additionally, fine-tuning of the energy

scaling coefficients within the Lead Finder scoring function
has further decreased rmsd to the value of 0.88 kcal mol−1.
Moreover, we were able to reproduce the selectivity of
ligand binding between the two isoforms of the enzyme-
PARP1 and PARP2-suggesting that the Lead Finder
software can be used to design isoform-selective inhibitors
of PARP. An impressive enrichment was obtained in the
virtual screening experiment, in which the mentioned set of
PARP inhibitors was mixed with a commercial library of
300,000 compounds. We also demonstrate that the virtual
screening performance can be significantly improved by an
additional structural filtration of the docked ligand poses
through detection of the crucial hydrogen bonding inter-
actions with the enzyme.
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Introduction

Poly-(ADP-ribose) polymerase (PARP) is an enzyme
abundantly expressed in the nucleus. It catalyzes poly-
(ADP-ribosyl)-ation of various proteins using NAD+ as an
ADP-ribose donor [1]. PARP-catalyzed covalent modifica-
tion regulates activity of proteins involved in the DNA
repair and maintenance of the genome stability, gene
transcription, cell proliferation and differentiation, and
other processes [2, 3]. Thus, the inhibition of PARP that
is intended to suppress reparation and survival mechanisms
upon the radio- or chemotherapy-induced cell damage is
viewed as a promising strategy in the anti-cancer therapy
[4]. Another therapeutic benefit of the PARP inhibition is to
rescue a cell from necrosis caused by the depletion of
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NAD+ pool, which takes place during the myocardial
infarction and other pathophysiological conditions [5].
Finally, the inhibition of PARP-stimulated transcription of
pro-inflammatory genes might have a positive therapeutic
effect in the cardiovascular therapy [5].

Once PARP had been identified as an important
therapeutic target, a number of HTS techniques to recover
its inhibitors were developed. The original methods
employed the count of 32P included into the poly-(ADP-
ribose) produced by PARP. Those methods were quite
laborious, expensive and hazardous [6]. Later, a less
hazardous technique employing 3H-labeled NAD+ was
developed [7] and a variety of other isotope-free methods
appeared, including: the application of monoclonal anti-
bodies against the poly-(ADP-ribose) [8]; use of biotiny-
lated NAD+ to produce the biotinylated poly-(ADP-ribose)
imaged by biotin [9, 10]; the quantitative determination of
the chemically modified NAD+ by fluorescence [11]; a
technique based on the observation that PARP activity
retards the growth rate of yeast [12]. However, those
techniques were still laborious and expensive compared to
other HTS assays, in which a direct detection of the
reaction products was possible (e.g., in case of proteases).
With this in mind, the development of a robust in silico
method to model binding of PARP with its inhibitors would
benefit the discovery of novel hits and lead compounds
targeting PARP.

So far, numerous works on modeling the PARP
inhibition by means of molecular docking and QSAR
approaches have been published [13, 14]. However, these
works have been confined to modeling the structure and
the binding energy of PARP-inhibitor complexes, while
the ability to distinguish between the true binders and the
decoy ligands, which is crucial for practical research, has
not been attempted. In addition, the cited works exploited
relatively small sets of the known PARP inhibitors, which
hampered extrapolation toward the new scaffolds.

In this study we evaluate the performance of the recently
introduced Lead Finder docking software [15] in predicting
binding energies and poses of the PARP inhibitors. Lead
Finder is a novel docking software that combines the
genetic algorithm search with local optimization procedures
and smart exploitation of the knowledge generated during
docking process to perform global minimum search on the
multidimensional surface describing free energy of protein-
ligand binding. Lead Finder introduces three scoring
functions specifically optimized for (a) accurate binding
energy predictions; (b) correct energy-ranking of docked
ligand poses; and (c) correct rank-ordering of active and
inactive compounds in virtual screening experiments.

A set of 142 well characterized compounds with known
binding potencies was used for benchmarking. We also
evaluate the ability of Lead Finder to distinguish the true

PARP binders from the decoy ligands in a virtual screening
experiment, in which the mentioned set of compounds was
mixed with an actual library of 300,000 ligands. In
addition, we demonstrate how the performance of Lead
Finder in docking and scoring can be further improved.
First, adjusting the energy scaling coefficients of Lead
Finder’s internal scoring function lowers the root mean
square deviation (rmsd) of the binding energy prediction
from 1.67 kcal mol−1 to 0.88 kcal mol−1. Second, the
application of an additional structural filter to the docked
ligand poses that identifies the formation of conservative
hydrogen bonds between the ligand and the enzyme has
resulted into a 10-fold increase of the enrichment factor.
Both techniques-the adjustment of the energy scaling
coefficients and the structural filtration of the docked ligand
poses-can be easily exploited by a Lead Finder user.
Finally, we evaluate if the current accuracy of the binding
energy prediction is good enough to model the selectivity
of ligand binding between the two PARP isoforms-PARP1
and PARP2, where the latter structure was developed by
means of homology modeling.

Experimental section

PARP inhibitors

A set of experimentally characterized PARP inhibitors was
retrieved from the recent literature sources to evaluate the
efficiency of the PARP inhibition modeling. In total, 142
structures, comprising 11 different scaffolds, were selected
from the original publications [13, 14, 16–19] (Fig. 1). The
physicochemical characteristics (cLogP, charge, number of
hydrogen bond donors and acceptors) of the selected PARP
inhibitors are provided in the Supplementary Material. For
the current molecular modeling purposes, the 3D-
coordinates of inhibitors were obtained with ACD/Chem-
Sketch Freeware 9.0. The ligand protonation states were
manually checked and corrected by an expert. The final set
of PARP inhibitors with 3D-coordinates and their proton-
ation states used in this study is available for download
[20].

Preparation of protein structure models

The full-atom models of PARP1 were prepared from the
raw PDB structures by adding hydrogen atoms and
assigning ionization states of the amino acids using the
Model Builder (build_model.exe) module of the Lead
Finder software package. The optimization of amino acid
side chains (provided in the Results and discussion section)
was performed using the covalent docking option of Lead
Finder.
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The full-atom model of PARP2 isoform was built by
homology modeling with PARP1 using the default options
of the Modeller software. The addition of hydrogen atoms
and the optimization of amino acid side chains for PARP2
model were performed in the same way as described above
for PARP1.

Docking and binding energy calculations

Ligand docking and binding energy calculations were
performed with the Lead Finder v. 1.1.10 software under
its default configuration parameters. The reference ligand
for mapping the inhibitor binding site was taken from the
PDB structure 1efy. The size of the grid box for ligand
docking was set to extend 6Å (the default value) in each
direction from the reference ligand. The dG-score produced
by Lead Finder was taken as the predicted value of the
ligand binding energy. Only the top-ranked poses were used
for structural and energy analyses.

To evaluate the accuracy of energy calculations, the exper-
imental values of binding energy were derived from the IC50
values cited in the original publications. For this purpose,
IC50 values were first converted into the inhibition constants
(Ki) according to the formula of competitive inhibition:

Ki ¼ IC50
�

1þ NADþ½ ��KNAD
m

� � ð1Þ
where [NAD+] is the concentration of NAD+ used in a
particular experiment, and Km

NAD is its Michaelis constant

(50μM according to the literature data [21]). The values of
[NAD+] used in particular experimental works were
carefully extracted from the corresponding literature sources
(as specified in the Supplementary Material). The derived Ki

values were further transformed into the free energies of
binding according to the well-known formula:

ΔG ¼ RT ln Kið Þ ð2Þ
The resulting experimental free energies were then

compared with the dG-score values predicted by Lead
Finder.

Virtual screening

A set of 300,000 ligands comprising the STK library of
Vitas-M Laboratory [22] was used as a decoy ligand set to
benchmark the performance of Lead Finder in virtual
screening. Virtual screening consisted of docking 142
known inhibitors and 300,000 decoy ligands into the PARP
active site in the screening regime of Lead Finder and rank-
ordering ligands according to their VS-score values. For the
quantitative characterization of virtual screening efficiency,
the true positive rate (TP) plot and the enrichment factor
(EF) plot were used, as suggested in the recent methodo-
logical study [23]. The TP plot depicts the percentage of the
recovered active compounds (the true positive rate) as a
function of the percentage of the recovered decoy ligands
(the false positive rate). The EF at a certain stage of

Fig. 1 PARP inhibitors used in
the current modeling study. Li-
gand numeration corresponds to
the original works, except for
some ligands that were dropped
off due to the lack of robustly
measure binding constants (see
the Supplementary Material for
details)
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screening equals the ratio of the achieved TP to the TP
obtained by random ligand pick. The EF plot depicts EF as
a function of TP. The commonly used discreet indicators of
EF are EF20, EF40 and EF70, which denote the enrichment
factors at 20%, 40% and 70% of recovered active ligands
correspondingly.

Structural filtration of docked ligand poses

For each top-scoring ligand pose obtained in virtual
screening the formation of two particular hydrogen bonds,
one with the main chain carbonyl and one with the amide
groups of residue G769, was checked. This was done
automatically using the structure_filter.exe module of Lead
Finder. This module takes a protein structure file and a list
of protein residues for which it checks the formation of
hydrogen bonds with potential inhibitors from an sdf output
file produced by Lead Finder. The formation of a hydrogen
bond was deemed to occur when the distance between the
hydrogen bond donor and acceptor was found to be less
than 3.5Å and the angle was greater than 150°. For the
practical purpose of virtual screening, the application of an
additional structural filter resulted in the following: the list
of ligands ranked by their VS-score was reorganized by
moving the ligands that did not form the hydrogen bonds of
interest to the end of the list.

Results and discussion

Preparation of PARP1 structure model

It is well known that the preparation of an adequate full-
atom protein structure model is one of the key success
factors in modeling protein-ligand interactions. Thus, the
development of a high quality model of PARP1 structure
was the first objective of our study. A number of PARP1
structures, co-crystallized with different inhibitors, were
available from the PDB, namely: 3 structures of the human
enzyme and 7 structures of the chicken one. Since all
human structures of PARP1 were almost identical, espe-
cially in the active site region, we picked only one of them,
1uk1, for conversion to a full-atom model for the reason
that it contained the largest bound inhibitor. We also
decided to consider an additional PARP1 model prepared
from the chicken structure, 1efy, because the active site
residues of both enzymes were practically identical while
the crystallographic resolution of 1efy (2.2Å) was notably
better than that of 1uk1 (3.0Å).

In the next step, we wanted to evaluate both protein
structure models for their predictive strength in order to
select the best model. We decided to evaluate models by
docking the set of 142 inhibitors with known binding

potencies to both PARP1 models and counting ligands that
could be correctly accommodated in the enzyme active site.
Since no crystallographic data were available for a direct
comparison of docked poses to the crystallographic ligand
poses, we had to define what would constitute a correct
position of a ligand. First, we noticed that all known
PARP1 inhibitors had a common structural feature-a pair of
adjacent hydrogen bond donor and acceptor atoms that
form correlated hydrogen bonds with the main chain
carbonyl and amide groups of G769, a conserved residue
among PARP isoforms and PARPs from different sources.
So, the formation of those hydrogen bonds (Fig. 2) was the
first indicator of a correct ligand placement. The second
criterion was an appropriate placement of ligand’s tail,
which is usually attached to the pharmacophore group of
nanomolar binders, in a special gorge in the PARP active
site (Fig. 2) that can be seen in the available PDB
structures. Those were the two structural criteria we used
to determine if a particular ligand was docked correctly to a
particular model of PARP1. Each ligand was docked
independently 20 times in order to determine the probabil-
ity of finding a correct ligand pose.

Docking to the 1uk1 model revealed that 21 out of 142
ligands were docked incorrectly with the probability of 1.0
(e.g. in each of the 20 independent docking attempts). At
the same time, 26 ligands were incorrectly docked with the
probability of 1.0 to the 1efy. It appeared that almost all
Series 2 inhibitors (Fig. 1) were docked incorrectly to the
1uk1 model. An analysis of the incorrectly docked ligands
revealed that those inhibitors were probably too large to
accommodate their pharmacophore group in the PARP1
active site even under the soft Lennard-Jones potential
implemented in the Lead Finder program. On the contrary,
the ligand’s pharmacophore group was placed almost

Fig. 2 Structural fingerprints of inhibitor binding by PARP: the
correlated hydrogen bonds with conserved G769 residue and the
placement of ligand’s tail in the gorge of the binding site. Positions of
R878 side chain characteristic for 1uk1 (colored by atom name) and
1efy (red) structures of PARP1 are outlined
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always correctly in the 1efy model, while incorrect
positioning of ligand’s tail was the prevailing reason of
docking failures with 1efy. Incorrectly docked ligands
oriented their tails toward the solvent medium instead of
penetrating the gorge of the active site, indicating there
were some steric hindrances. A superposition of 1uk1 and
1efy structures revealed one notable difference regarding
the organization of the active site gorge in those two
models, namely the position of the residue R878. In 1efy
model, that residue was slightly shifted and that reduced the
effective volume of the gorge and its capacity to accom-
modate ligands with longer tails (Fig. 2).

We decided to test if we could improve the 1efy model
by realigning the mentioned residue. For that purpose, we
performed covalent docking of the R878 side chain to find
its alternative energy-optimal positions. It appeared that the
new top-scoring position of R878 was much closer to that
of the 1uk1 model. Encouraged by this result, we
performed docking of the full ligand set on the updated
1efy model. This time the results were much better
(Table 1). Only 2 ligands, 2-24 and 5–43, were docked
incorrectly in all 20 attempts, while 121 ligands (85% of all
ligands) were docked correctly with the probability of 0.5
or greater. A closer examination of the incorrectly docked
ligands revealed that ligand 2–24 was too large (it was
probably the largest of all studied ligands) and it could not
accommodate its rigid pyrrolocarbazole pharmacophore in
the active site. Ligand 5–43 was incorrectly docked due to a
scoring function error of the Lead Finder program, which
overestimated the hydrogen bonding energy with the
ligand’s nitro group and erroneously placed it in contact
with G769.

Unfortunately, we could not identify a reasonably simple
way of improving the quality of the 1uk1 model. It was
evident that some extra space in the pharmacophore binding
sub-site could improve docking. Unlike in the 1efy case, we
could not find any particular residues that we could move
and therefore acquire the needed space. Probably a more
complex procedure like molecular dynamics optimizations
could relax the 1uk1 structure in a desired way, but we
decided to stop further experiments since we had already
identified a high quality PARP1 structure model.

Binding energy estimations

Free energies of ligand binding provided by the dG-scoring
function of Lead Finder were compared with the experi-
mental data extracted from the literature. In order to
improve reliability of such comparisons, the value of
predicted binding energy was calculated as an average
dG-score of correctly docked poses in 20 independent
docking attempts for each ligand. For ligands 2–24 and 5–
43 that were incorrectly docked in all 20 attempts, the

lowest dG-score value was taken. Our objectives in
conducting such analysis were: a) to compare binding
energies of the correctly docked ligand poses, and b) to
perform the comparison in a statistically meaningful way.
The results of comparison (Table 1) indicate that Lead
Finder demonstrated impressive accuracy in the binding
energy prediction with rmsd of 1.67 kcal mol−1 on the set
of 142 inhibitors.

Interestingly, a recent study where 330 diverse protein-
ligand complexes were used to benchmark the binding
energy prediction by Lead Finder15 returned an rmsd value
of 1.50 kcal mol−1 that is fairly close to the results of the
current study. This suggests that Lead Finder can consis-
tently predict dG values regardless of the nature of a
particular protein or a ligand.

Adjustment of the scoring function for binding energy
calculations

Without regard to the fact that the accuracy of binding
energy prediction with the standard dG-scoring function
was already fairly convincing, we were able to demonstrate
that the prediction accuracy could be further improved for a
particular set of ligands. In other words, Lead Finder’s dG
scoring function can be easily customized by end users to
obtain more accurate estimations of the binding energy for
a particular set of ligands. The Lead Finder dG scoring
function represents a linear combination of different energy
terms:

ΔG ¼ ΣkiEi ð3Þ

where Ei stand for different types of interactions (e.g., van
der Waals, Coulomb, hydrogen bonding, etc.) and ki-are the
corresponding scaling coefficients. Therefore, one can alter
the scaling coefficients to modify the target function in a
desired way. From a practical point of view, the custom-
ization of a scoring function is easy. The energy compo-
nents (Ei) provided by Lead Finder for a set of ligands of
interest are exported into a table where one can adjust the
scaling coefficients to fine-tune the target function. The
procedure can be automated or performed manually in
spreadsheet processing software.

In the current work we tried to customize the dG scoring
function to improve the binding energy prediction for the
PARP enzyme. We did that manually in MS Excel,
avoiding automation for two reasons: we wanted to have
full control over the parameters during the optimization
stage and we wanted to demonstrate that such custom-
ization can be easily done by an end user.

Once the scaling coefficients were adjusted by using the
entire set of 142 ligands as a training set, the rmsd of the
predicted binding energy dropped from 1.67 kcal mol−1 to
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Ligand ΔGexp ΔGcalc Ligand ΔGexp ΔGcalc Ligand ΔGexp ΔGcalc

1–14 −10.2 −10.8 3–11a −8.4 −9.1 4–23 −11.1 −9.2
1-1a −11.0 −8.1 3–12a −7.4 −6.7 4–24 −11.4 −11.7
1-1b −11.0 −10.2 3–13a −9.1 −9.9 4–25 −11.6 −8.0
1-1c −12.2 −10.3 3–14a-1 −9.4 −10.2 4–26 −8.7 −9.5
1-1d −11.3 −11.1 3–14a-2 −9.4 −8.0 4–27 −9.8 −9.0
1-1e −11.2 −8.3 3–15a −9.9 −6.2 4–28 −10.9 −8.4
1-1f −10.3 −9.7 3–16d-1 −11.6 −8.6 4–29 −11.8 −8.2
1-1 g −11.4 −9.6 3–16e-1 −10.7 −9.5 4–3 −10.3 −11.5
1–2a −10.0 −9.6 3–16e-2 −9.5 −9.8 4–30 −10.7 −7.5
1–2b −10.4 −10.6 3–16f −10.8 −9.9 4–31 −11.4 −12.0
1–3a −9.9 −9.2 3–16g −10.6 −10.3 4-4 −11.2 −8.6
1–3b −10.8 −11.3 3–17c −10.9 −12.1 4–5 −11.2 −8.8
1–3c −10.1 −9.5 3–17e −10.9 −10.0 4–6 −10.9 −8.4
1–3d −10.0 −10.0 3–17g −11.4 −12.4 4–7 −9.5 −7.0
1–3e −10.3 −9.7 3–4a −11.2 −10.9 4–8 −10.9 −8.1
1–3f −10.2 −10.4 3–4b −11.5 −11.8 4–9 −10.7 −9.2
1–9a −10.0 −10.5 3–4c −11.0 −11.0 5–17 −9.4 −7.8
1–9b −10.5 −11.0 3–4d −10.9 −9.6 5–18 −10.5 −11.1
2-1 −10.5 −8.8 3–4e −11.3 −8.7 5–19 −8.1 −7.2
2–10 −10.4 −10.1 3–4f −11.6 −9.6 5–20 −9.8 −7.5
2–11 −10.5 −10.5 3–4g −11.2 −9.9 5–21 −7.9 −9.8
2–12 −10.2 −10.2 3–5a −10.6 −8.6 5–22 −8.2 −9.7
2–13 −10.2 −11.3 3–5d −10.1 −9.1 5–23 −9.8 −8.9
2–14 −10.3 −9.9 3–5e −10.5 −10.0 5–24 −9.0 −6.8
2–15 −10.3 −10.6 3–6a-1 −11.2 −7.7 5–25 −8.0 −9.1
2–16 −10.8 −10.8 3–6a-2 −11.2 −8.0 5–26 −10.1 −11.1
2–17 −10.9 −11.4 3–6b −11.1 −9.1 5–27 −9.0 −8.3
2–18 −10.8 −11.0 3–6d-1 −11.2 −8.9 5–29 −9.7 −9.9
2–19 −10.7 −10.6 3–6d-2 −9.5 −9.9 5–30 −8.7 −8.6
2-2 −10.9 −9.4 3–6e −10.7 −8.9 5–31 −9.9 −9.9
2–20 −10.3 −9.9 3–6f −10.9 −9.6 5–32 −8.5 −5.9
2–21 −10.2 −9.7 3–9a-1 −9.8 −9.8 5–33 −9.4 −6.3
2–22 −10.9 −10.5 3–9a-2 −9.8 −10.4 5–34 −7.9 −7.4
2–23 −10.2 −9.2 4-1 −10.4 −11.6 5–35 −8.9 −7.3
2–24 −10.3 −7.7 4–10 −11.3 −11.6 5–36 −9.8 −7.5
2–25 −10.8 −9.8 4–11 −10.3 −9.2 5–37 −9.6 −7.6
2–26 −10.4 −10.9 4–12 −10.9 −9.9 5–38 −9.8 −7.6
2–27 −10.8 −12.0 4–13 −10.6 −9.7 5–39 −9.3 −7.5
2–28 −10.6 −11.2 4–14 −10.3 −9.6 5–40 −9.1 −7.6
2–29 −10.2 −11.4 4–16 −11.4 −9.0 5–41 −10.3 −7.7
2–3 −10.9 −9.5 4–17 −10.3 −6.7 5–42 −10.0 −7.4
2–30 −10.1 −8.0 4–18 −8.6 −8.0 5–43 −9.9 −5.9
2–4 −11.1 −11.7 4–19 −11.5 −11.7 5–44 −7.8 −8.1
2–5 −10.4 -11.7 4-2 −8.6 −8.5 5–45 −8.0 −7.3
2–6 −10.0 −9.3 4–20 −11.0 −10.4 5–46 −8.0 −7.6
2–7 −10.4 −7.2 4–21 −10.7 −8.5 6–17 −9.3 −7.0
2–8 −10.8 −9.1 4–22 −11.0 −8.9 6–21 −8.8 −7.9
2–9 −10.2 −10.6

Table 1 Experimental and cal-
culated binding energies (in kcal
mol−1) of PARP1 inhibitors.
Ligands, which were docked
correctly with probability <0.5
are underlined; ligands mis-
docked in all 20 trials are typed
in bold
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0.88 kcal mol−1. As can be seen from Table 2, only 2 types
of energy contributions were notably changed-the hydrogen
bond energy and the so called Born energy associated with
the electrostatic component of ligand desolvation. As for
the hydrogen bond energy, all corresponding contributions,
namely the constant term equalizing ligand’s hydrogen
bonds in the solution and in the protein-bound states; the
penalty term on polar atoms that do not form hydrogen
bonds; the energies of the hydrogen bonds formed in polar
and non-polar environments; the extra energy of the
correlated hydrogen bonds-were increased. Such transfor-
mation of the scaling coefficients have a clear physical
sense-the hydrogen bond interactions are crucial for
specific binding with PARP, and the optimization of the
dG scoring function confirmed that assumption quantita-
tively. As for the Born energy, many PARP1 inhibitors were
positively charged and therefore an additional adjustment of
this term made clear sense. However, it should be stressed
that a significant change of a particular coefficient may not
have a significant influence on the resulting binding energy,
since energy contributions can differ by orders of magni-
tude. For example, a several-fold strengthening of the
hydrogen bonding contribution was offset by a minor
change in the Van der Waals coefficient.

Speaking of the methodology of scoring function
customization, current results bring evidence that fine-
tuning of the energy scaling coefficients for the particular
protein or ligand set is closely related to the physical

characteristics of the modeled system. This observation
suggests that an automatic customization must somehow
account for the linkage between scaling coefficients and
their physical sense and take into account the natural limits
for the variation of scaling coefficients. These issues will be
a likely subject of our future studies devoted to the
customization of Lead Finder’s scoring functions.

Modeling selectivity of PARP1 and PARP2 inhibition

Finally, we investigated if the currently available accuracy
of binding energy calculation was adequate to model the
selectivity of inhibitor binding between the two PARP
isoforms-PARP1 and PARP2 [24]. Despite the fact that
PARP1 is a predominant form of the enzyme, it has been
shown recently that targeting PARP2 might have a distinct
therapeutic potential [3, 16]. The major issue we faced
regarding the selectivity modeling was the absence of an
experimentally defined structure of the human PARP2.
However, the inhibitor binding interface of PARP2 had
only 2 amino acid substitutions V762I and L769G (residue
numbers correspond to the PARP1 sequence) compared to
PARP1. We decided to probe if a side-chain optimization of
those residues could produce a good model of PARP2 and
if we could attain selectivity by using our docking and
scoring approach. To evaluate performance of selectivity
modeling, experimental data from a recent study devoted to
the synthesis of PARP2 inhibitors were used16. The

Сoefficient Descriptiona Relative change

kVdW Van der Waals interactions 0.75

ksol Nonpolar solvation energy (volume-based term) 0.85

kpolar-P Surface of polar ligand’s atoms contact with protein 1

kpolar-S Surface of polar ligand’s atoms contact with the solvent 1

knonpolar-P Surface of nonpolar ligand’s atoms contact with protein 1

knonpolar-S Surface of nonpolar ligand’s atoms contact with the solvent 1

kelec,0 Electrostatic energy of interactions of buried charges 1

kelec,1 Electrostatic energy of interactions of intermediately buried charges 1

kelec,2 Electrostatic energy of interactions of surface charges 1

klig_born Born energy of ligand’s charges transfer from the solvent to protein 4

kHB, lig-pen Penalty on ligand’s polar atoms that do not form H-bonds with protein 2

kHB, prot-pen Penalty on protein’s polar atoms that do not form H-bonds with ligand 2.5

kHB-polar Energy of H-bonds in polar environment 3

kHB-nonpolar Energy of H-bonds in nonpolar environment 3

kHB, corr Energy of correlated H-bonds 5.5

kmetal Energy of ligand interaction with metal ions 1

knb Difference in the ligand’s non-bonded energy upon binding 1

k1–4 Difference in the ligand’s energy of 1–4 interactions upon binding 1

kdihedral Energy of dihedral angles 1

ktors Energy of entropic losses associated with ligand’s rotatable bonds 1

Table 2 Relative change
(expressed in the folds of mag-
nitude) of the energy scaling
coefficients obtained upon
the dG-scoring function
customization

a definitions of the energy terms
can be found in Ref. [15]
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experimental data included inhibition constants of 20
compounds (series 1 on Fig. 1). Approximately half of
them were selective for PARP1 and another half-for PARP2
(Table 3). The cited work is the only public source of the
PARP2 inhibition constants at present and its data are
especially valuable for the selectivity benchmarks since all
measurements were performed in similar conditions.

First, we attempted to prepare a PARP2 model by simply
deleting the side chain of L769 and attaching a methyl
group to V762, reproducing mutations L769G and V762I
correspondingly. No energy optimization of the mutated or
neighboring residues was performed. Then, inhibitors were
docked to the resulting model and we observed no
correlation between the experimental and calculated selec-
tivity, despite the fact that the overall agreement with the
PARP2 binding energies was satisfactory (rmsd 0.90 kcal
mol−1). It became obvious that selectivity modeling was
more sensitive to the structural features of the protein. We
decided to further refine the PARP2 model by optimizing
positions of the mutated residues and their immediate
neighborhood. For practical reasons, we used Lead Finder’s
covalent docking functionality to optimize side-chains,
thereby avoiding more complex procedures such as
molecular dynamics computations. First, no side chain
optimization was necessary for the L769G and V762I
mutations (in the latter case the residue was tightly packed
within the protein interior, so it had no additional degrees of
freedom). However, the introduction of isoleucine instead
of valine led to a steric clash with residues D766 and Y889,

which were hydrogen-bonded to each other in the PARP1
structure. After optimization, D766 residue formed a salt
bridge with R878, while Y889 formed a hydrogen bond
with the main chain carbonyl of G892 (Fig. 3). Obviously,
the introduced steric constraints disrupted the hydrogen
bonding interaction between D766 and Y889, however
those residues were able to compensate for that loss.
Interestingly, D766 could not form a salt bridge with
R878 in PARP1, because L769 sterically shielded that
interaction; however, when leucine was replaced by glycine

Ligand Experiment Calculation

Ki(PARP1), nM Ki(PARP2), nM Selectivitya Ki(PARP1), nM Ki(PARP2), nM Selectivity

1–14 41 60.5 −0.17 5.1 95.3 −1.27
1-1a 10.5 437.8 −1.62 38.3 344.6 −0.95
1-1b 11.5 439.2 −1.58 7.6 710.7 −1.97
1-1c 1.5 62.6 −1.62 23.8 14.5 0.21

1-1d 6.5 360 −1.74 14.7 41.7 −0.45
1-1e 8 120.2 −1.18 45.8 150.5 −0.52
1-1f 34 453.6 −1.13 4.1 37.8 −0.96
1-1 g 5.5 216 −1.59 102.9 n/ab n/a

1–2a 60 50.4 0.08 59.1 347.2 −0.77
1–2b 30 59.8 −0.30 9.0 10.2 −0.05
1–3a 65.5 10.1 0.81 313.0 28.7 1.04

1–3b 16.5 5.0 0.52 42.4 8.5 0.70

1–3c 50.5 5.8 0.94 59.9 12.0 0.70

1–3d 59 7.9 0.87 86.3 15.2 0.75

1–3e 35.5 5.8 0.79 80.9 22.4 0.56

1–3f 43.5 6.5 0.83 28.5 28.7 0.00

1–9a 60 64.8 −0.03 25.2 3.9 0.81

1–9b 24.5 60.5 −0.39 3.6 8.6 −0.38

Table 3 Experimental and cal-
culated data on the selectivity of
PARP1 and PARP2 inhibition
by the compounds of Series 1

a selectivity is expressed as the
log10 of the ratio of binding
constants for PARP1 and
PARP2
b ligand was misdocked and
excluded from the selectivity
evaluation

Fig. 3 The modeled binding site of PARP2. Residues D766 and Y889
(gray-before optimization, colored by name-after optimization) are
outlined
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in PARP2, such contact became feasible. Using the refined
model of PARP2 we obtained a reasonable correlation of
the selectivity (Table 3) that could be explained at the
molecular level. The movement of D766 in PARP2 changed
the shape of the active site gorge, which allowed more
comfortable accommodation of ligands with a large rigid
pharmacophore. At the same time, ligands with a long flexible
tail fitted into PARP1 structure better, probably because
D766 did not shield R878 that capped the end of the gorge.

Virtual screening performance

To further characterize Lead Finder’s capacity to model the
PARP1 inhibition we set up a virtual screening experiment
where the already mentioned set of 142 inhibitors was
mixed with a library of 300,000 compounds, and the

resulting set of ligands was screened against PARP1 and
rank-ordered by their predicted VS-scores. The resulting
enrichment curves depicting the enrichment factor as a
function of the percentage of recovered inhibitors, and the
true positive rate as a function of the percentage of screened
decoys are presented in Figs. 4 and 5. The enrichment
curves start with a rapid rise attributed to the correct
placement of true PARP1 inhibitors in the top of the rank-
ordered library. A stable high enrichment is observed for
90% of the inhibitors recovered; after that, the enrichment
gradually declines since the residual fraction of the ligands
was not docked correctly and therefore their VS-score
values were no better than those of the decoys. Despite the
fact that a minor fraction of the ligands was not correctly
docked, the commonly cited indicators of virtual screening
were impressive: EF20=120, EF40=150, EF70=140,
TP0.5=70, TP2=90, and TP5=98. We would like to point
out that a significant part of the set of 142 PARP1 inhibitors
were micromolar binders (Table 1). It is well known that
many benchmarking studies rely on the use of nanomolar

Fig. 4 Enrichment factor plot of the virtual screening for PARP1.
Light gray curves correspond to the default virtual screening
performance; dark gray curves describe the performance after
additional structural filtration of the docked ligand poses

Fig. 5 True positive rate plot of
the virtual screening for PARP1.
Light gray curves correspond to
the default virtual screening
performance; dark gray curves
describe the performance after
additional structural filtration of
the docked ligand poses. Only
the informative part of the plot
where the true positive rate is
less than 100% is depicted

Fig. 6 An example of novel potential PARP1 inhibitor recovered by
virtual screening. The structure is disclosed with a permission from
the Vitas-M Laboratory
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binders that present a less significant challenge for docking
software. Therefore, the used set of inhibitors was closer to
the real-life ligand sets, and Lead Finder successfully
withstood that challenge.

Structural filtration improves the virtual screening
performance

We also hypothesized that the virtual screening efficiency
could be further improved if we exploited the knowledge
about the specific interactions formed by PARP1 with its
binders. As our docking studies revealed, all of the 142
inhibitors we considered were capable of forming 2
correlated hydrogen bonds with residue G769 (except for
the two ligands that could not be correctly docked).
Obviously, we assumed that such hydrogen bonding to
G769 was mandatory for strong binding with PARP, and we
searched through docked poses of the entire library of
ligands to filter out compounds that did not conform to
such structural criterion. The structural filtration revealed
that only 1526 out of 300,000 ligands satisfied the criterion.
From a practical viewpoint, this means that the enrichment
factor could be increased by a factor of 197 through the
reduction of library size by structural filtration of the
docked ligand poses. An additional enrichment was attained
by ranking the selected ligands according to their VS-score.
The resulting enrichment plot (Figs. 4 and 5) illustrates the
impact of structural filtration on the virtual screening
performance. The updated indicators of the enrichment
after structural filtration were: EF20=2000, EF40=1800,
EF70=1400, TP0.5=100, TP2=100, and TP5=100.

We argue that the structural filtration of docked ligand
poses has a clear advantage over the ligand-based or 3D-
QSAR approaches of improving the virtual screening
performance. Obviously, ligand-based searches are limited
to the predefined chemical scaffolds, raising concerns about
the discovery of novel compounds. Moreover, structural
similarity of a ligand pharmacophore does not guarantee its
proper accommodation in the protein binding site since its
shape and flexibility do matter. In order to demonstrate how
docking-based methods can retrieve novel chemical scaf-
folds, we are providing an illustration of a sample ligand we
found in a virtual screening experiment-a ligand that nicely
fills the active site cavity and forms crucial hydrogen bonds
with the G769 (Fig. 6). The 3D-QSAR approaches may
also start from examining the docked ligand poses to infer
particular structural features favoring binding, however the
obtained correlations may have little or no physical sense.
In our view, the refinement of virtual screening results (e.g.,
structural filtration) must originate from physically mean-
ingful structural features of the protein binding site. In the
case of PARP, a displacement of the solvent (from G769)
by the ligand was obviously favorable: the ligand could

form 2 hydrogen bonds without any entropic losses, while
only tight packing of the water molecules could render the
same interactions, and probably the enthalpic losses were
also inevitable in that case. We tentatively hypothesize that
such observations might be viewed as a general route for
creating structural filters and improving virtual screening
performance for arbitrary proteins.

It is worth mentioning that we used different approaches
to improve the binding energy prediction and the virtual
screening performance. Since binding energy evaluation was
meaningful only for true PARP1 binders, a slight refinement
of Lead Finder’s dG scoring function (i.e., the adjustment of
energy scaling coefficients) was enough. At the same time,
improvement of the virtual screening performance required a
more radical approach that was not directly connected with
the VS scoring function. Clearly, these results point to the
imperfections of the scoring functions, especially in evalu-
ating the affinity of non-binders. However, we have
demonstrated that the scoring function customization and
the structural filtration of docked ligand poses can dramat-
ically improve docking and virtual screening results and be
easily implemented by Lead Finder users.

Conclusions

In summary, we have demonstrated that the currently
available docking and scoring approaches implemented in
the Lead Finder software are capable of modeling PARP
inhibition with the degree of accuracy approaching the
experiment. Moreover, we have shown how the basic
performance of binding energy estimations and virtual
screening can be improved by the scoring function custom-
ization and the structural filtration of docked ligand poses,
which can be easily implemented by Lead Finder users. We
also hope that the obtained results will aid the experimental
discovery of novel classes of PARP1 ligands, as well as
development of PARP1 or PARP2 isoform-selective inhibitors.
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